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Large-scale datacenter systems rely on stateful control plane services. Distributing state

for such services can be difficult; idiosyncratic interfaces and performance requirements

precludes the use of general, fixed API storage systems, while custom solutions are often

complicated and difficult to debug and maintain. By funneling all updates through a sin-

gle, durable, totally ordered log, Shared Log State Machine Replication can make arbitrary

state available, durable, and strongly consistent among a number of machines using a single

service. The log abstraction hides the complexity of asynchrony and failures from appli-

cations, allowing them to be built as simple state machines that process updates in strict

sequence. However, this simplicity comes at a cost to speed and flexibility by imposing

a system-wide total order that is expensive, often impossible, and typically unnecessary.

Furthermore, the State Machine Replication paradigm itself functions as a broadcast do-

main, forcing servers to see more state than is actually useful. This work investigates the

implications of weakening the Shared Log State Machine Replication semantics. By guar-

anteeing a partial ordering of updates instead of a total order, the FuzzyLog achieves linear

scaling with transaction support, weak consistency models, and progress during network

partitions. By allowing servers to filter which updates they see within the context of an

object, FuzzyViews enable greater privacy and read performance.
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Terms and Abbreviations

CAPMap A FuzzyLog-based best-effort key value store that provides linearizability during

normal execution and causal consistency during network partitions.

Chain A totally ordered subset of a partial order. In FuzzyLog, a totally ordered sublog

of the partially ordered FuzzyLog.

DAG Abbreviation of “directed acyclic graph”.

Dapple The implementation of the FuzzyLog used for experiments in this thesis.

Event An element within an objects history. Synonym for update.

FuzzyLog The partially ordered shared log abstraction that serves as a focus for this work.

FuzzyView A State Machine Replication object created based on a subsequence of updates

from an underlying object.

Object The result of applying a history into some form better suited for performing queries.

Shard A subset of data from a distributed system which is co-located.

SMR Abbreviation of State Machine Replication.

State Machine Replication A technique in which a object is replicated across multiple

machines via broadcasting the events which altered the object [1].

Update An element within an object’s history. Synonym for event.
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Chapter 1

Introduction

1.1 The FuzzyLog

Large-scale datacenter systems rely on control plane services such as filesystem namenodes,

SDN controllers, coordination services, and schedulers. Such services are often initially built

as single-server systems that store state in local in-memory data structures. Properties

needed to achieve performance at scale, such as durability, high availability, and scalability

are then retrofitted by distributing service state across machines. Distributing state for such

services can be difficult; their requirement for low latency and high responsiveness precludes

the use of external storage services with fixed APIs such as key-value stores. Custom

solutions can require melding application code with a medley of distributed protocols such

as Paxos [2] and Two-Phase Commit (2PC) [3], which are individually complex, slow and

inefficient when layered, and difficult to merge [4, 5].

A recently proposed abstraction, the distributed shared log, simplifies this. Shared logs

are an extension of State Machine Replication (SMR) in which all updates to the distributed

state are funneled through a single, durable, globally-shared log. This paradigm has been

used to construct fault-tolerant databases [6–10], metadata and coordination services [11,

12], key-value and object stores [13–15], and filesystem namespaces [16, 17]. Services built

over a shared log are simple, compact layers that map a high-level API to append/read

operations on the shared log. The log acts as the source of strong consistency, durability,

failure atomicity, and transactional isolation. This layering vastly simplifies the construction
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of distributed systems. For example, a shared log version of ZooKeeper uses 1K lines of

code, an order of magnitude lower than the original system [11].

Despite the usefulness of object history as the underlying abstraction, the simplicity of

a shared log requires imposing a system-wide total order that is expensive, often impossible,

and typically unnecessary. Previous work has shown that a centralized, off-path sequencer

can make such a total order feasible at intermediate scale (e.g., a small cluster of tens of

machines) [11,18]. However, at larger scale—in the dimensions of system size, throughput,

and network bandwidth/latency—imposing a total order becomes expensive: ordering all

updates via a sequencer limits throughput and slows down operations if machines are scat-

tered across the network. In addition, for deployments that span geographic regions, a total

order may be impossible: a network partition can cut off clients from the sequencer or a

required quorum of the servers implementing the log. On the flip side, a total order is often

unnecessary: updates that manipulate disjoint data, such as different keys in a map, do not

need to be ordered, while updates that touch the same data may be able to commute be-

cause the application allows weak consistency guarantees (e.g., causal consistency [19]), or

due to the inherent commutativity of the update types. We set out to explore the following

question: can we provide the simplicity of a shared log without imposing a total order?

To answer this question, we propose the FuzzyLog abstraction: a durable, iterable, and

extendable order over updates in a distributed system. Crucially, a FuzzyLog provides a

partial order as opposed to the total order of a conventional shared log. The FuzzyLog is

a directed acyclic graph (DAG) of nodes representing updates to a sharded, geo-replicated

system (see Figure 1.1). The FuzzyLog materializes a happens-after relation between up-

dates: an edge from A to B means that A must execute after B.

The FuzzyLog captures two sources of partial ordering in distributed systems: data

sharding and geo-replication. Nodes in the FuzzyLog are organized into colors, where

each color contains updates to a single application-level data shard. A color is a set of

independent, totally ordered chains, where each chain contains updates originating in a

single geographical region. Chains within a color are connected by cross-links that represent

update causality. The entire DAG—consisting of multiple colors (one per shard) and chains

within each color (one per region)—is fully replicated at every geographic region and is
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Figure 1.1: In the FuzzyLog, each color is composed of nodes, which in turn contain updates
to a data shard. The colors are organized into chains each of which contains updates from
a geographical region. App servers materialize this state into a form more appropriate for
querying.

lazily synchronized, so that each region has the latest copy of its own chain, and some stale

prefix of the chains of other regions. Figure 1.1 shows a FuzzyLog deployment with two

data shards (i.e,. two colors) and two regions (i.e., two chains per color).

The FuzzyLog API is simple: a client can append a new node by providing a payload

describing an update and the color of the shard it modifies. The new node is added to the

tail of the local chain for that color, with outgoing links to the last node seen by the client

in each remote chain for the color. The client can synchronize with a single color, playing

it forward by applying new nodes from the local region’s copy of that color in a reverse

topological sort order of the DAG. A node can be appended atomically to multiple colors,

representing a transactional update across data shards.

Applications built over the FuzzyLog API are nearly as simple as conventional shared

log systems. As shown in Figure 1.1, FuzzyLog clients are application servers that maintain

in-memory copies or views of shared objects. To perform an operation on an object, the

application appends an entry to the FuzzyLog describing the mutation; the application
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server then plays the FuzzyLog, retrieving new entries from other clients and applying

them to its local view until it encounters and executes the appended entry. The local

views on the application servers constitute soft state that can be reconstructed by replaying

the FuzzyLog. A FuzzyLog application that uses only a single color for its updates and

runs within a single region is identical to its shared log counterpart [11, 18]; the FuzzyLog

degenerates to a totally ordered shared log, and the simple protocol described above provides

linearizability [20], durability, and failure atomicity for application state.

By simply marking each update with colors corresponding to data shards, FuzzyLog

applications achieve scalability and availability. They can use a color per shard to scale

linearly within a data center; transactionally update multiple shards via multi-color ap-

pends; obtain causal consistency [19] within a shard by using a color across regions; and

toggle between strong and weak consistency when a network partition occurs by switching

between regions.

Implementing the FuzzyLog abstraction in a scalable and efficient manner requires a

markedly different design from existing shared log systems. We describe Dapple, a system

that realizes the FuzzyLog API over a collection of in-memory storage servers. Dapple

scales throughput linearly by storing each color on a different replica set of servers, so

that appends to a single color execute in a single phase, while appends that span colors

execute in two phases (in the absence of failures) that only involve the respective replica

sets. Dapple achieves this via a new fault-tolerant ordering algorithm that provides linear

scaling for single-color appends, serializable isolation for multi-color appends, and failure

atomicity. Across regions, a lazy synchronization protocol propagates each color’s local

chain to remote regions.

We implemented a number of applications over the FuzzyLog abstraction and evaluated

them over Dapple. AtomicMap (201 lines of C++) is a linearizable, durable map that

supports atomic cross-shard multi-puts, scaling to over 5.5M puts/sec and nearly 1M 2-key

multi-puts/sec on a 16-server Dapple deployment. CRDTMap (284 LOC) provides causal+

consistency [21] by layering a CRDT over the FuzzyLog. CAPMap (424 LOC) offers strong

consistency in the absence of network partitions, but degenerates to causal+ consistency

during partitions. We implemented a ZooKeeper clone over the FuzzyLog in 1881 LOC
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that supports linear scaling across shards and supports atomic cross-shard renames. We

also implemented maps that implemented Red-Blue consistency [22] and a transactional

CRDT [23].

Existing implementations of these applications are monolithic and complex; they often

re-implement common mechanisms for storing, propagating, and ordering updates (such

as protocols for atomic commit, consensus, and causality tracking). The FuzzyLog imple-

ments this common machinery efficiently under an explicit abstraction, hiding the details

of protocol implementation while giving applications fine-grained control over sharding and

geo-replication. As a result, applications can express different ordering requirements via

simple invocations on the FuzzyLog API without implementing low-level distributed proto-

cols.

Contributions: We propose the novel abstraction of a FuzzyLog (§2): a durable, iterable

DAG of colored nodes representing the partial order of updates in a distributed system. We

argue that this abstraction is useful (§2.1), describing and evaluating application designs

that obtain the simplicity of the shared log approach while scaling linearly with atomic-

ity, obtaining weaker consistency, and tolerating network partitions. We show that the

abstraction is feasible in practice (§5.1), describing and evaluating a performant, scalable,

fault-tolerant implementation called Dapple.

1.2 FuzzyViews

In this thesis we also propose the abstraction of a FuzzyView: a view of state materialized

from an arbitrary subsequence of a total order of updates. The FuzzyView enables selective

SMR, where each server reflects a selection of past updates rather than the entire total

order. An implication of selective SMR is diversity: each server can reflect a potentially

different view over the same total order. We explore multiple applications of selective SMR:

• Function accelerators, where a server efficiently implements a narrow subset of appli-

cation functionality. For example, in a replicated map, a server might be dedicated to

providing fast key existence checks, for which it only needs to see updates that insert

and remove keys, not changes to existing keys.
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• Approximate views, where the state at a server is consistent but approximate. Ap-

plications can use approximate views to trade precision for performance while still

providing strong consistency. For example, an approximate view for a counter can

provide a trade-off between error and response latency.

• Privacy-aware applications, where the state at each server satisfies some level of pri-

vacy. For example, consider a location-tracking application where each update is a

check-in (i.e., the geographical location of a person at a particular time), and the

materialized state is a heat-map of such check-ins. In such an application, each server

might store check-ins that occur within some geographical area (e.g., near work or

near home) or within some time period (e.g., work hours vs. non-work hours).

• Ensemble learning, where the state at each server is a different machine learning model

over the same set of updates. For example, different models can be constructed from

updates tied to users with different characteristics (e.g., whether the user is logged-in

or not). The resulting diversity of the ensemble can result in higher accuracy.

The FuzzyView abstraction ties together the concepts of sharding, weak consistency,

materialized views [24], and learners in SMR systems.

1.3 Background

Every distributed system generates and manipulates a history in some manner, with varying

degrees of transparency. At one extreme are abstractions for explicitly ordering updates.

These system have a long history, ranging from Virtual Synchrony [25, 26], State Machine

Replication [1], Viewstamp Replication [27], Multi-Paxos [28], and newer approaches such

as Raft [29]. Many of these impose a total order on updates; the exceptions track particular

partial orders imposed by operation commutativity (pessimistically [30, 31] and optimisti-

cally [32]), causal consistency (as in Virtual Synchrony and Lazy Replication [33]), network

partitions (as in Extended Virtual Synchrony [34]), or value independence .

At the other extreme are transaction processing systems. In these systems, the transac-

tion history not exposed at all to the user, rather it is implicitly stored and manipulated to
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allow for efficient transaction scheduling [35], generally with the intent of allowing as many

transactions as possible to commit concurrently. Though the history of such systems is not

directly exposed, an understanding of it is important for determining what the outcome

of a set of transactions will be. Recent work has investigated the benefits from optimizing

based on this implicit history; leading to renewed interest in such techniques as transaction

chopping [36–39] wherein a transaction is replaced with multiple ones in a manner which

maintains the valid schedules. Such techniques lower the contention between transactions,

increasing the throughput of the system, while maintaining its semantics. Meanwhile, tech-

niques such as the scalable commutativity rule [40] and I-Confluence [41] have investigated

restricting APIs to a form that is more amenable to concurrent scheduling.

A number of systems provide weaker consistency by removing ordering that a naive

user would expect the object’s API to provide. COPS [21] and Eiger [42] provide causal

consistency in a partitioned store, while Bayou allows for disconnected updates and even-

tual reconciliation [43, 44]. TARDiS [45] exposes branch-on-conflict as an abstraction in

a fully replicated, multi-master store. Though such systems are too diverse to allow for

many generalizations, they all share one key feature: they allow for different views to have

diverging state, and only be reconciled at a later point. Although this divergence can make

programmer’s lives more difficult [21], it is critical to these system’s main use-case: allowing

progress to be made with little to no communication. While some systems, such as Red-

Blue [22], attempt to restrict the set of operations allowed, so that each machine returns

answers consistent with the state of the system as a whole, many of these systems simply

allow results inconsistent with any serializable order, and simply reconcile differences after

the fact [21,46–48].

The FuzzyLog is an outgrowth of the State Machine Replication [1] paradigm. State

Machine Replication (SMR) provides a simple, transparent way to replicate arbitrary state,

called an object, in a distributed system. The object replicas are kept in sync by funneling

all updates through a total order; to use Lamport’s terminology, the total order is stored

durably on acceptor servers, while the replicas of the object are stored on learner servers.

A key aspect of the SMR paradigm is that the views of the objects found on the learners

are simply soft-state caches; durability is derived from the acceptor servers. Accordingly,
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the state of an object is effectively the total order of updates stored at acceptors, and one or

more materialized soft-state copies stored at the learners. In real-world systems, the total

order is garbage collected periodically; when this happens, the burden of durability shifts

to some other location that stores checkpoints of the materialized state.

An object is mutated by appending an update to the total order. To read the object with

linearizable semantics, a learner must play the total order forward, applying new updates

to its materialized state. We call the total order the history of the object; the materialized

copies are views.

Accordingly, current SMR systems can be seen as having two halves. The top half is

responsible for materializing the views, and translating the arbitrary object APIs to and

from a form that can be stored durably, and interpreted by other machines. The bottom

half is responsible for realizing the total order. Systems currently implement this bottom

half via various abstractions:

• Multi-Paxos [28] systems typically realize the total order as an address space of num-

bered single-shot Paxos instances.

• Group communication [25] systems implement the total order via a group broadcast/-

multicast abstraction that delivers messages to receivers in a total order.

• Shared log [11,18] systems obtain total ordering via a shared log abstraction with an

append/read API.

Our system extends on this model. We relax the ordering requirement to allow for par-

tially ordered system histories; within an object we do this to enable weakened consistency,

progress during network partitions, and low-latency geo-replication; between objects, we

relax ordering to improve throughput in sharded scenarios. Further, we examine the im-

plications of relaxing materialization requirements, allowing views to be constructed from

part of an object’s history. Such FuzzyViews enable a tradeoff between completeness, per-

formance, and privacy, and suggest an even richer event-oriented perspective to come.

Other systems improve performance not by altering the consistency of their queries,

but by relaxing their answers along some other dimension. Approximate databases, such
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as BlinkDB [49], extend a SQL-based database interface with the ability to specify queries

over samples of data. Such sample-based queries achieve significant speedup by sacrificing

exact answers in favor of ones with only statistical guarantees. In many applications such

approximate answers are all that are necessary (and in some domains, all that are possible

due to measurement error), resulting in a worthwhile trade-off.

Our FuzzyViews exist in a similar domain, and can be used to provide statistical queries,

as in our sampled counter, though the lack of a convenient way to generate a new indepen-

dent sample prevents them from being a strict generalization. However, unlike statistical

mechanisms which rely on a quantitative data model and can only provide probabilistic

guarantees, SMR and FuzzyViews can work with arbitrary data models and provide abso-

lute guarantees.
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Chapter 2

The FuzzyLog Abstraction

A FuzzyLog is a type of directed acyclic graph (DAG) that can be constructed and traversed

concurrently by multiple clients. The nodes in this graph are used to store events, and the

graph’s edges are used to represent dependency information. For clarity, in the remainder

of this thesis we will use the term ‘node’ exclusively to refer to nodes in the FuzzyLog DAG

and not for other uses like nodes in a distributed system.

Each node in the DAG is tagged with one or more colors; these colors divide an appli-

cation’s state into logical data-shards. Nodes tagged with a particular color correspond to

updates against the corresponding data shard.

Each color is a set of totally ordered sub-logs called “chains”; there is one chain per

region, with cross-edges between chains to indicate causality. Every region has a full but

potentially stale copy of each color; the region’s copy has the latest updates of its own

chain for the color, but stale prefixes of the other per-region chains for that color. Clients

only interact with their own region’s local copy of the DAG; they can modify this copy by

//constructs a new handle for playing a color
FL ptr new instance(colorID color, snapID snap=NULL);
//appends a node to a set of colors
int append(FL ptr handle, char ∗buf, size t bufsize , colorset ∗nodecolors);
//synchronizes with the log
snapId sync(FL ptr handle, void (∗callback)(char ∗buf, size t bufsize ));
//trims the color
int trim(FL ptr handle, snapID snap);

Figure 2.1: The FuzzyLog API.
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Figure 2.2: The evolution of a single color.

appending to their own region’s chain for a color, and can play-back the DAG by reading

from their color’s chains in a procedure described later.

Figure 2.1 shows the FuzzyLog API. A client creates an instance of the FuzzyLog with

the new instance call, supplying a single color to play forward. It can play nodes of this

color with the sync call, and it can append a node to a set of colors. We will first describe

the operation of these calls in a FuzzyLog deployment with a single color (i.e., an application

with a single data shard), and later describe how this is extended to multiple shards.

The sync call is used by the client to synchronize its state with the FuzzyLog. A sync

takes a snapshot of the set of nodes currently present at the local region’s copy of a color,

and plays all new nodes that have been added since the last sync invocation. Once all of

these new nodes have been provided to the application via the passed-in callback, the sync

returns with an opaque ID describing the snapshot. The nodes returned by sync are seen

in a reverse topological sort order of the DAG: nodes in each chain are seen in the reverse

order of edges within the chain, and nodes in different chains are seen in an order that

respects cross-edges. Nodes in different chains that are not ordered by cross-edges can be

seen in any order. Each node effectively describes a list of prior nodes – via its position
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in a totally ordered chain, and via explicit pointers for cross-edges. Figure 2.2 shows the

evolution of a client’s view of a color. In panel 1 the client synchronizes with the color;

in panels 2 and 3 the client trails behind as new nodes are replicated into the local region

from afar; and in panel 4 the client synchronizes once again, catching up. After each of the

syncs the client receives a Snapshot ID. These IDs can be used by clients to check if the

set of nodes seen by one client subsumes the set of nodes seen by another.

When a client appends a node to a color with append, an entry is inserted into the local

region’s chain for that color. The entry becomes the new “tail” of the chain, and it has

an edge in the DAG pointing to the previous tail; we define the tail as the only node in

a non-empty chain with no incoming edge. In this manner, the local region chain imposes

a total order over all updates generated at that region. The node also has outgoing cross-

edges pointing to the last node played by the client from every other per-region chain for

the color; in effect, the newly appended node is ordered after every node of that color is

seen by the client. For example, in Figure 2.2 panel 3, a client appends a new node I to

the region’s local chain (after node H), with a cross-edge to E, which is the latest node in

the remote chain seen by the client.

To garbage collect the FuzzyLog, clients can call trim with a snapshot ID, indicating

that the nodes in it are no longer required (because e.g., the client stored the corresponding

materialized view in a durable external store). A snapshot ID can also be provided to the

new instance call, in which case playback skips nodes within the snapshot; this allows a

new client to join the system without playing the FuzzyLog from the beginning.

While the sync and trim calls operate exclusively over a single color, the FuzzyLog

supports appending to multiple colors at once: an append to a set of colors atomically

appends the entry to the local chains for each color. The new node is then reflected by

sync calls on any one of the colors involved. If a node is in multiple colors, trimming it in

one color does not remove it from the other colors it belongs to, the node must be trimmed

from every color it inhabits individually.

Semantics: Operations within a single region are serializable. All append and sync

operations issued by clients within a region execute in a manner consistent with some serial

execution. This serialization order is linearizable if the operations are to a single color
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within the region (i.e., on a single chain); it does not necessarily respect real-time ordering

when append operations span multiple colors.

Operations to a single color are causally consistent across regions. In other words, two

append operations to the same color issued by clients in different regions are only ordered

if the node introduced by one of them has already been seen by the client issuing the other

one. In this case, an edge exists in the DAG from the second node to the first one. The

internal structure of the DAG ensures that the copies at each region converge even though

concurrent updates can be applied in different orders at them: since the clients at each

region modify a disjoint part of the DAG (i.e., they append to their own per-region chain),

there are never any conflicts when the copies are synchronized.

2.1 FuzzyLog Applications

This section describes how applications can use the FuzzyLog API, with a case study of

an in-memory key-value storage service. In this section, the term ‘server’ refers exclusively

to application servers storing in-memory copies of the key-value map, which in turn are

FuzzyLog clients. We start with a simple design called LogMap that runs over a single

color within a single region (i.e., it effectively runs over a single totally ordered shared log).

Each LogMap server has a local in-memory copy of the map and supports put/get/delete

operations on keys. The server continuously executes a sync on the log in the background,

applying updates to keep its local view up-to-date. A get operation at the server simply

waits for a sync that started after the get was issued. Once this sync completes, the get

accesses the local view and returns. Waiting for a latter sync in this manner ensures that

any updates that were appended to the FuzzyLog before the get was issued are reflected

in the local view at the time the get accesses it, providing linearizability. A put/delete

operation appends a node to the FuzzyLog describing the update; it then waits for a sync

to apply the update to the local view, at which point it returns.

This basic LogMap design – implemented in just 193 lines of code – enables durability,

high availability, strong consistency, concurrency control and failure atomicity. It is identical

to previously described designs [18] over a conventional shared log, however, and its reliance
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Figure 2.3: FuzzyLog capabilities: AtomicMap scale with the number of servers while still
allowing multi-server transactions.

on a single total order comes at the cost of scalability, performance, and availability. The

remainder of this section describes how LogMap can be modified to use the FuzzyLog to

circumvent each of these limitations.

2.1.1 Scaling with atomicity within a region

We first describe applications that run within a single region and need to scale linearly. In

ShardedMap (193 LOC), each server stores a shard of the map; each shard corresponds to

a FuzzyLog color. Updates to a particular shard are appended to the FuzzyLog as nodes of

the corresponding color; each server syncs its local state with the color of its shard. This

simple change to LogMap – requiring only that the color parameter is set appropriately on

calls to the FuzzyLog – provides linear scalability for linearizable put/get operations.

The FuzzyLog supports atomicity across shards. If the atomic operation required is a

simple blind multi-put, that doesn’t return a value, all we require is that the appends

update a set of colors instead of a single one. This simple change allows a server to modify

multiple shards at one, one shard for each of the colors the server appends to. AtomicMap

(201 LOC, Figure 2.3) realizes this design. One subtle point is that since FuzzyLog multi-
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color appends are serializable, AtomicMap is also serializable, but not strictly serializable

nor linearizable.

To implement read/write transactions with stronger isolation levels, we use a simple

two-phase commit [3] variant. To commit, the server appends an intention node into the

FuzzyLog to the set of colors corresponding to the shards being read and written. When

a server encounters the intention node in the color it’s playing, it appends a second node

with a yes/no decision and read-set for that color, to the set of colors. To generate this

decision, the server examines the sub-part of the transaction touching its own shard and

independently (but deterministically) validates it (e.g. checking for constraint violations).

A server only applies the transaction to its local state if it encounters both the original

intention and a decision marked yes for each color involved, blocking conflicting operations

until it can determine if the transaction commits or aborts.

Interestingly, this protocol provides strict serializability even though the FuzzyLog itself

is only serializable. Intuitively, within a single color the intention-nodes serialize trans-

actions: if, after appending an intention-node for a transaction T , a client waits until it

plays the node before declaring the transaction complete, the client is guaranteed to have

seen all transactions—that could appear earlier than T in the serial order—before declaring

that T itself is completed. As a result, future transactions must appear later in the serial

order, ensuring strict serializability. In a multi-color transaction we need to ensure that

this applies to all the involved colors: the client must have seen all transactions, in all the

colors involved, that could appear before T . A decision node conveys this information: for

a decision node to be written at a color, all earlier transactions must be completed. Thus,

as in Tango [11], our protocol requires at least one application server to be available for

each shard in order to generate decision records, to ensure progress.

2.1.2 Weaker consistency across regions

Applications can often tolerate weaker consistency guarantees. One example is causal con-

sistency [19], which roughly requires the following: if a server performs an update U1 after

having seen an update U0, then any other server in the system must see U0 before U1. If

U1 and U2 were performed independently by servers that did not see each other’s update,
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Figure 2.4: FuzzyLog capabilities: CRDTMap implements causal consistency, allowing low-
latency across distant regions.

U1 and U2 can be seen in any order. Causal consistency is appealing as it is in some senses

the strongest consistency level that can be provided during a network partition [21].

CRDTMap implements a causally consistent map. In Figure 2.4, the map is replicated

across two regions, one in NYC and another in SF. CRDTMap simply uses a single color

for all updates to a map. In each region, put operations are appended to the local chain for

the color; these operations are asynchronously propagated to the other regions, ensuring all

regions eventually see all of the updates to the map. Since the partial order within a color

is exactly the causal order of updates, each server playing the color observes updates in a

causally consistent order.

To achieve convergence when servers see causally-independent updates in different or-

ders, we employ a design for CRDTMap based on the Observed-Remove Set CRDT [50],

which exploits commutativity to ensure that concurrent updates result in the same final

state, without requiring rollback logic even when the updates are seen in conflicting orders.

The CRDT design achieves this by predicating the deletions performed by a server on non-

deleting puts that the server has already seen; accordingly, each delete node in the DAG

lists the put operations that it subsumes.
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Figure 2.5: FuzzyLog capabilities: CAPMap provides linearizability in normal operation
while falling back to causal consistency during a network partition.

2.1.3 Tolerating network partitions

While CRDTMap can provide availability during network partitions, it does so by sacrificing

consistency even when there is no such partition in the system. CAPMap (named after the

CAP conjecture [51]) provides strong consistency in the absence of network partitions and

causal consistency during them (see Figure 2.5).

As with our other map designs, CAPMap appends entries on put operations and then

syncs until it sees the appended node. Unlike the other designs, CAPMap requires servers

to communicate with each other, albeit in a simple way: servers route FuzzyLog appends

through proxies in other regions. To perform a put in the absence of network partitions,

the server routes its append through a proxy in a primary region; it then syncs with its own

region’s copy of the FuzzyLog until it sees the new node before declaring the put completed.

As a result, when no network partition is occurring a total order is imposed on all updates

(via the primary region’s chain for the color), and the map is linearizable.

When a secondary region is partitioned away from the primary region, servers switch

over to appending to the FuzzyLog in the local region, effectively ‘forking’ the total order.

19



CAPMap sets a flag on these updates to mark them as secondary nodes (i.e., appends

occurring at the secondary). When the network partition heals, servers in the secondary

region stop appending locally and resume routing appends through the proxy in the primary

region. Every routed append includes the snapshot ID of the last sync call at the secondary

client; the proxy blocks the append until it sees a subsuming snapshot ID on a sync, ensuring

that all the nodes seen by the secondary client have also been seen by the proxy and are

available at the primary region.

Any server playing the DAG after the partition heals enforces a deterministic total order

over nodes in the forked section: when it encounters any secondary node, it buffers them

until the next primary node (i.e., the joining node). All buffered nodes are then applied

immediately before the joining node, ensuring that all servers observe the same total order

and converge to the same state. As a result, we obtain causal+ consistency [21] during

network partitions and linearizability during time periods when there is no such partition.

2.1.4 Other designs

TXCRDTMap: Two properties discussed so far – transactions within a single region and

weak consistency across regions – can be combined to provide geo-distributed transactions.

With 80 LOC of code change in CRDTMap, we can obtain a transactional CRDT that

provides cross-shard failure atomicity [23] (or equivalently, an isolation guarantee similar to

Parallel Snapshot Isolation [52]).

RedBlueMap: The FuzzyLog can support RedBlue consistency [22], in which blue

operations commute with each other and with all red operations, while red operations have

to be totally ordered with respect to each other, but not with blue operations. RedBlue

consistency can be implemented with a single color. One of the regions is designated a

primary, and ‘Red’ operations are routed to the primary via a proxy (and thus totally

ordered, similar to CAPMap). ‘Blue’ operations are performed at the local region. We

implemented RedBlueMap in 330 LOC.

COPSMap: While CRDTMap can be scaled by sharding system state across different

per-color instances, an end-client interacting with such a store will not get causal consistency

across shards [21,42]. Concretely, in a system with two regions and two colors, an end-client
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in one region may issue a put on a red server, and subsequently issue a put on a blue server.

Once the blue put propagates to the remote region, a different end-client may issue a get

on a blue server, and subsequently a get on a red server. If the end-client sees the blue put,

it must also see the red put, since they are causally related. To provide such a guarantee,

the map server can return a snapshot ID with each operation; the end-client can maintain

a set of the latest returned snapshot IDs for each color and provide it to the map server on

each operation, which in turn can include it in the appended node. In such a scheme, when

the blue server in the remote region sees the blue put, it contacts a red server to make sure

the causally preceding red node has been seen by it and exists in the region. Such a design

requires servers playing different colors to gossip the last snapshot IDs they have seen for

their respective colors. We leave the COPSMap implementation for future work.

2.1.5 Garbage collection

As with shared log systems, garbage collection is enormously simplified by the nature of the

workload: the log is used to store a history of commands rather than first-class data, and

can be trimmed in increasing prefixes. At any time, the application can store its current

in-memory state (and the associated snapshot ID) durably on some external storage system,

or alternatively ensure that enough application servers have a copy of it. Once it does so,

it can issue the trim command on the snapshot ID. Clients that are lagging behind may

encounter an already trimmed error, in which case they must retrieve the latest durable

state from the external store, and then continue playing the log from that point.
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Chapter 3

New Applications

Having discussed the applicability of the FuzzyLog to classic distributed systems challenges,

data-sharding and geo-replication, we now move on to more surprising systems that can re-

sult from altering the guarantees provided by SMR. As opposed to classic SMR views, which

materialize logically-independent sub-histories, with selective SMR we explore the conse-

quences of filtering our events within a single history. These FuzzyViews are materialized

from a subsequence of the history of an object, and such subsequences can be arbitrarily de-

fined. Despite only materializing part of an object, FuzzyViews offer linearizable semantics

for updates and queries; a query will view any updates in the total order that completed

before it started, and the history of the view will satisfy the definition of the subsequence.

Conceptually, a FuzzyView can be created and kept up-to-date by applying a filtering pred-

icate to the totally ordered stream of updates. The design space for the FuzzyView can be

bisected based on where and how the filtering occurs:

• Post-hoc filtering: In principle, a FuzzyView can be implemented simply by ap-

plying the filtering predicate at the view upon playback. Post-hoc filtering can be

implemented in the context of any SMR design and does not require any special sup-

port from the ordering engine. However, its benefits are limited. Figure 3.1a shows

that post-hoc filtering does not provide a performance boost: if the amount of ‘work’

required to process and apply an update to the local view is not excessively high, the

benefit provided by a FuzzyView that performs post-hoc filtering is minimal. Further,
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Figure 3.1: Filter Performance.
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since updates are played and interpreted at the learner, we do not obtain particularly

strong privacy guarantees.

• Pre-hoc filtering: Alternatively, we can filter updates within the ordering engine,

such that each learner only receives updates of interest to it. Such an approach reduces

network overhead and provides privacy benefits, since the learner machine does not

see updates that are filtered out. This approach does require the ordering engine to

be modified in order to support selective playback.

Building an ordering engine – such as a shared log or a multicast primitive – that sup-

ports general-purpose in-network filtering can be daunting; we would effectively be building

a database engine. However, we already have an efficient mechanism by which we can build

pre-hoc filters over our existing shared log implementation: we can use our color mechanism

to have nodes determine at append time which filters are applicable to a proposed update,

and tag them appropriately. Machines thus only receive events they need to materialize

their views, and only require a small amount of additional bookkeeping in the append path

to handle writes to the object.

Regardless of where filtering is done, FuzzyViews are created from the same history as

the underlying object, with all of the unwanted updates ignored. Since we do not distort

the history of the underlying object, we retain the benefits of the shared log: there remains

a pristine version of the object’s history in the log, which clients can still play to materialize

the full object; and all requests made to FuzzyViews are fully linearizable with respect to

each other, and the full views. Even though they have less information, reads from any of

the views are as consistent and up-to-date as reads from the pristine version would be.

3.1 Accelerating applications

The simplest use-case for FuzzyViews is to accelerate queries. In many situations, a query

on an object may not require a complete view of the object’s history in order to provide

an exact answer, or alternatively may be able to tolerate an approximate answer, if the

answer’s error is bounded. Such queries can be issued against a FuzzyView of the object
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based on a subsequence that only contains “important” updates; since these views are able

to skip many of the updates in their objects history, they can respond to queries sooner,

while imposing less load on the system as a whole.

We provide an illustrative example for each of these use-cases: a key-value map which

provides a precise FuzzyView for determining if a given key is present within the map; and a

bounded-error counter, whose FuzzyView can be used to obtain an estimate of the counter’s

current value. We further discuss the techniques used to derive these FuzzyViews from their

underlying objects, and how such techniques can be used to construct novel FuzzyViews.

3.1.1 Function accelerator

Consider a map that can be mutated with the following API: insert (key, value),

update (key, value), and remove (key, value). A query that checks if a given key is

present in the map, i.e.,contains(key), can be answered by a replica that only keeps

track of insert and remove operations. Such a replica maintains the key-set of a map,

and implements a FuzzyView that answers the contains query exactly. To implement this,

we simply associate each operation with a different color in the shared log: the key-set can

be materialized by reading only the color corresponding to insert and remove. Since they

only read a subsequence of operations from the shared log, these replicas can update their

views faster, and thus answer queries quicker—e.g.,to efficiently check if a user has already

been registered for a service— without sacrificing consistency.

The map example above is a particular case of a more general construction: whenever

an object consists of multiple logical components, each component can be given its own

FuzzyView. Many data structures have this property, and naturally expose it through

their APIs. For example, a broadcast queue can be viewed as having separate enqueue

and dequeue components, which is useful in a multi-consumer scenario. The clients only

look at enqueues, and insert a dequeue for each entry they read. A garbage collector reads

only the dequeues and removes those entries that have been seen by everyone. Another

example is a list that supports add, remove and set operations: keeping track of the adds

and remove tells clients the length of the list, while keeping track of set says something

about invalidations. In general, any container structure that allows items to be modified
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(e.g.,lists, trees, maps) could benefit from function accelerators that separate changes to

items from changes to the set membership.

These examples are by no means exhaustive. We expect accelerators to be highly specific

to individual data structures and applications.

3.1.2 Approximation

Sometimes it is unnecessary to provide an exact answer to a query and one that approxi-

mates the true value suffices. Such queries are common in statistical analysis as the results

are only correct to within a certain degree of error anyway [49]. Views that provide ap-

proximation can be constructed by ignoring parts of the history which only contribute a

small amount to the result. We illustrate this by constructing a simple counter object that

supports FuzzyViews with bounded absolute error: the views are accurate to within ± t
2

for some threshold t. We start with a version that only supports a single incrementor and

generalize it to a construction similar to the consistency metrics in [53, Section 3.4].

Single incrementor. A single incrementing client maintains a local accumulator con-

taining the total amount the client has changed the counter. The accumulator can be

decomposed into the form q · t + r, i.e., some multiple of the threshold plus a remainder

r < t. If an increment increases q, the update is marked “significant” by associating it

with a different color in the shared log. By reading only the “significant” updates, we can

construct a FuzzyView that can return estimates of the counter, by multiplying the number

of updates by t. Specifically, after n increments the real and estimated values are:

real =
n∑
1

1 = n est =

bn/tc∑
1

t = bn/tc · t

Let n = q · t+ r. Since est = bn/tc · t = b(q · t + r) /tc · t = bqc+ br/tc · t = q · t, we know

the actual value of the counter lies within [est, est + t). Thus by choosing the midpoint of

this range, (est + t
2), we obtain an estimate for the counter that is within ± t

2 of the actual

value.

It is important to note that marking an update as significant to a view does more than
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just let the view observe the update; the existence of the update implies information about

prior (non-significant) updates in the history that the view does not have access to. For

instance, if the FuzzyView sees a significant update of magnitude less than t, it can infer that

there was at least one other non-significant update it did not see. Although this information

may be useful from a performance or functionality perspective, it may be problematic from

a privacy standpoint. We explore this issue in Section 3.2.

Non-uniform increments. Generalizing to non-uniform increments requires a slightly

more advanced strategy. To see why, consider a counter with threshold t = 10; if an

increment of 11 is received there are two possibilities:

1. The accumulator’s remainder is less than 9. The estimated value needs to be t greater

than its current value. For example, if the real value was 15 and the estimate 10 before

the increment, the real value should be 26 and the estimate 20 after the increment.

2. The accumulator’s remainder is at least 9. The estimated value needs to be 2t greater

than its current value. For example, if the real value was 19 and the estimate 10 before

the increment, the real value and estimate should both be 30 after the increment.

The required increase will not always be t or 2t, as it depends on the magnitude of the

increment, but in general there will only be two cases. Unfortunately, the basic counter we

have constructed has no way of distinguishing between these two cases.

There are two solutions to this problem. One is to split the increment into two updates.

Assuming the increment value is s · t+ u, the incrementing client would split the increment

into two updates, the first with magnitude u and the second with magnitude s · t. While

this provides a correct estimate, the estimate (q + s + 1) · t being within t of the actual

value (q + s + 1) · t + (r + u) rem t, it has the adverse effect of turning an increment that

would have been atomic into a pair of updates. This may not be an issue in practice—the

estimate after the first update is still a valid estimate of the counter—but we prefer an

implementation that preserves atomicity.

Fortunately, we can support atomic increments by adding one extra bit of metadata to

each “significant” update. The protocol proceeds as in the uniform version, except that if
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an increment has magnitude greater than t, a bit is set iff the remainder of the increment

modulo t increases the counter over t. That is, if the increment is s·t+u and the accumulator

is q · t + r, the bit is set iff s > t and r + u ≥ t. The correctness of this construction is a

little subtle and benefits from a proof.

Proof. By induction. Assume the current estimate is est = q · t, real value is n = q · t+ r

with r < t, and est ∈ [n− t, n + t). Let the increment be inc = s · t + u with u < t and the

new real value n′. There are four cases:

a. inc < t and r + u < t.

Then s = 0 and the new value n′ = q · t + (r + u). Since r + u < t, est′ = q · t ∈

[n′ − t, n′ + t)

b. inc < t and r + u ≥ t.

Since r < t and u < t, r+u < 2t. So n′ = (q + 1) · t+ (r + u) mod t. Since the update

is significant, est′ = (q + 1) · t which maintains the invariant.

c. inc = s · t + u with s ≥ 1 and r + u < t.

Then n′ = (q + s) · t + (r + u) and est′ = (q + s) · t.

d. inc = s · t + u with s ≥ 1 and r + u ≥ t.

Then n′ = (q + s + 1) · t + (r + u) mod t

and enew = (q + s + 1) · t.

Since at the start est = n = 0, the base case holds, which concludes the proof.

Multiple incrementors. Generalizing to multiple incrementors simply changes the error

bound. With w incrementors and threshold t, the estimate falls in the range [est, est + w · t).

That is, each incrementor has at most t− 1 magnitude of increments that a reading client

does not see.

In all of these cases the counter estimates remain linearizable and, if a client desires, it

can recover a completely accurate value of the counter.

The above construction demonstrates two symmetrical techniques that aid in the con-

struction of FuzzyViews. One is update splitting, which is a powerful technique for ensuring
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that an object’s history has enough granularity to make FuzzyViews useful. In this tech-

nique we decompose a single, logical, operation at the application level into multiple physical

updates at the log level. For example, if the map example in Section 3.1.1 only supported

a combined insert or update operation, our key-set FuzzyView would not be viable; if

we wanted to construct the view, we would have to split such operations into separate

insert and update entries in the log. While update splitting can create the opportunity

for FuzzyViews where otherwise there would be none, it is not a panacea: update splitting

changes the number of updates a view sees, which can be a pessimization in some work-

loads. Moreover, forcing a mutation to use multiple updates instead of one may alter the

semantics of the object, in particular reducing its atomicity, meaning it cannot always be

used.

The second technique adds metadata to updates to summarize information about the

object’s state. This enables a FuzzyView to gain information it could not otherwise obtain,

which is particularly useful in objects that are very history based. The drawbacks are that

it forces a full view to read redundant data, and requires a mutator to maintain state.

Approximation can be combined with function accelerators to create yet more perfor-

mant objects. For instance, if in the key-set example above (3.1.1) if the replica keeps track

of only insert operations, instead of both inserts and removes, it would implement a

different FuzzyView that answers the contains query approximately, by reporting if a key

is probably within the map or definitely not in the map—akin to a Bloom filter [54].

The objects discussed in this section are by no means exhaustive; there are likely many

more such FuzzyViews that have yet to be discovered.

3.2 Privacy-Aware Applications

As we have seen, FuzzyViews can answer meaningful queries even if they only read a sub-

sequence of an object’s history, though in some instances, only by discarding information.

However, the fact that a FuzzyView excludes some information can itself be advantageous

from a privacy standpoint.

It is often desirable to expose part of an object’s state to less trusted consumers, while
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maintaining the full version for those with sufficient authority [55]. Providing such censored

access to a copy of the full object can be risky, since bugs in the authentication layer can

easily turn into security breaches [56]. These issues, privacy and partial declassification,

motivate a large body of work around information flow control [55, 56]. By filtering based

on authorization, FuzzyViews provide a mechanism for a system to expose only those parts

of an object that are actually required. Since these views contain only information the client

is allowed to access, any query on them is valid.

As an example of the kinds of views one might wish to provide, consider an employee

database. Managers need fairly complete information about their own employees, but do not

require detailed information about other employees. The finance department may need to

know about each employee’s salary, but not other information about them. An informatics

department may need all non-personal data to train models to predict employee welfare.

All of these views need to be kept in sync without accidentally exposing information where

it is not needed. FuzzyViews provide a mechanism for this.

Alternatively, consider a location tracking service. There are many demands for such a

service. Employers wish to track their employees locations during business hours. Parents

want to track their children to protect them. During a crisis, people want their friends,

family, as well emergency personnel to know whether they are in a safe location. A tracked

individual wants as much privacy as possible, without preventing those who need their

location from discovering it. It is tempting to use cell phones, which continuosly record

their location, to track users, but such devices record excessive information. For instance,

an employer should not be able to track an employee outside of work hours, as that would

be an invasion of privacy. By constructing a FuzzyView of the user’s location, such as one

filtered by time-of-day, users can ensure their employers, or others who need circumstantial

access to their location, only access the location data they have permission to see.

Figure 3.2 shows examples of maps generated based on FuzzyViews of one of the author’s

locations over several days. Each location update is tagged with a color based on whether

it occurs during business hours or not. Figure 3.2a shows the subject’s full path, spanning

all hours of the day. Figures 3.2b shows a FuzzyView of the path based on locations visited

during work hours; Figure 3.2c shows the complementary map of locations visited during
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Figure 3.2: A location tracking service example. The full view (a) captures the subject’s
locations at all hours, whereas the FuzzyViews (b,c) capture the locations during work
hours and non-work hours.

non-work hours. As can be seen, the work-hours filter hides most of the travel; there is

no way to tell from that map the extent to which the subject traveled during non-work

hours. These maps also illustrate a potential flaw with this approach: there is a gap in the

non-work-hours path which is suggestive of the locations occupied during work-hours.

This is a risk in any cutoff-based filtering: an adversary may be able to infer additional

information based on patterns in the information available. This particular case can be

mitigated by adding some gap time which is neither work-hours nor non-work-hours, to

allow the user to obfuscate their earlier location. Whether this gap is desirable depends on

who exactly has access to these views, and what guarantees they require; depending on the

times which need to be covered by the views, there may be no acceptable time to have the

gap. In general, hiding this kind of trajectory information from an adversary with multiple

samples is much more difficult than hiding information at specific point in time, and may

not be possible without more statistical techniques such as [57].

A FuzzyView guarantees that any query issued against it exposes no information beyond

what is provided by the updates the view has access to. Unlike differential privacy [57]

or other anonymization, our privacy guarantees are qualitative: updates are either entirely

hidden or entirely exposed, and can be applied to a single data-source, not just (aggregations

over) groups. This presents us with a set of security trade-offs that are much more similar
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to information flow-based systems [55, 56] than statistical ones, and FuzzyViews can likely

be used to simplify the implementation of an information flow system.

FuzzyViews enable simple interfaces because any query on the view is allowed (the

disallowed updates have been pre-filtered). Although pre-filtering is not strictly required

for privacy, it is desirable: unlike post-hoc filtering, sensitive data never reaches the local

machine at all, making it much less likely that a side-channel or read-exploit could expose

sensitive information. Furthermore, FuzzyViews have low implementation overhead: in

many cases, the update logic need not be aware of the filtering at the lower layers, and the

same code can be used to materialize both filtered and unfiltered histories.

3.3 Ensemble Learning Applications

A somewhat unexpected application of FuzzyViews occurs in ensemble learning, where

diverse machine learning (ML) models are trained and combined to improve the accuracy

of a prediction task [58]. In this setting, the data used to train an ML model is the “object”:

a full view enables training on all datapoints, whereas a FuzzyView enables training on a

subsequence of points.

Several ensemble learning techniques use all datapoints for training, achieving diversity

by varying the type of ML algorithm used. These techniques do not benefit from the

performance savings of FuzzyViews. However, other ensemble techniques train each model

on a subsample of the datapoints: for example, bagging [59] is an algorithm for contextual

bandit learning [59,60] that trains multiple predictors on different subsamples of the data,

with the goal of creating diverse predictions. FuzzyViews can be used to realize these

predictors: to train N different predictors, assign one of N colors uniformly at random to

each datapoint1, and construct a FuzzyView for each color.

One may question the benefit of FuzzyViews—and specifically, pre-filtering—if the out-

put of the predictors is going to be combined anyway, as in the case of bagging. There are

two answers to this. First, if the data append rate to the shared log exceeds the network

1. To ensure model reproducibility, colors should be assigned deterministically using a pseudorandom
generator.
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Figure 3.3: MSN homepage (image from [61]). The Slate (boxed red) and Panel (boxed
green) use the Decision Service in production as of early 2016.

capacity of a single machine, FuzzyViews reduce the inbound network traffic and allow pre-

dictors to still be trained on single machines, which is better than the alternative of doing

parallel learning. Second, diverse models need not always be combined: in many ML de-

ployments, models trained from a common data source are kept separate. For example, an

online service may find that training separate content-recommendation models for different

submodules of the site, or for different classes of users, leads to better prediction accuracy.

As a concrete example, consider the case of the Decision Service [61], an open-source

platform for contextual bandit learning2. The Decision Service personalizes news stories

displayed on MSN’s homepage, shown in Figure 3.3, which serves 10s of millions of users

issuing thousands of requests per second. When a user requests the homepage, MSN’s

frontend servers must decide how to order the articles on the page. If the user is logged

in, there is context: demographics (e.g., age, location) and the topics of news stories they

have clicked on in the past; otherwise only location is available. The goal is to maximize

the number of clicks on articles.

When the Decision Service was first deployed, it was applied to the Slate of the MSNhome-

page (see Figure 3.3), and only for logged-in users. Later, it was applied to the Panel and

2. We obtained access to the data and experiences of the service by contacting the research team [61].
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Full data Logged-in / Male /
Non-logged-in Female

1.000 1.021 0.982

Table 3.1: Estimated click-through rate of partitioned models (realized using FuzzyViews)
based on one day of MSNdata from April 2016, normalized against the full data model.

10+ other modules and markets (e.g.,Brazil, Europe). All of these deployments are in pro-

duction and are isolated from each other, poorly utilizing the underlying cloud services re-

quired by the Decision Service. FuzzyViews could enable a common data collection pipeline

across these deployments, amortizing the cost of those resources, by using a different color

per deployment.

For example, when the Slate deployment was extended to non-logged-in users, offline

experiments revealed that training a separate model for logged-in vs. non-logged-in users

yields better overall accuracy than a combined model. Similar experiments were done for

other partitions of the data, e.g.,based on the user’s location or gender. Table 3.1 shows

the estimated click-through rate of some partitioned models compared to the single full

data model, based on one full day of real MSNtraffic from April 2016. (We adopt the same

offline evaluation methodology used by the Decision Service [61].) All partitioned models are

realized using FuzzyViews with appropriate colors to distinguish each partition’s datapoints.

As the table shows, separating the models for logged-in vs. non-logged-in users improves

overal performance, whereas separating by gender does not.

3.4 Formalizing FuzzyViews

In this work we demonstrate how to construct views of an object which are linearizable yet

trade off precision to gain other benefits. It is helpful to define what we mean by precision.

Intuitively, we can say that one query is more precise than another if performing the query

requires more of an object’s history, that is, if it is more detailed. We formalize this notion

below.

We can define an object as having a current state s, drawn from some set S, a set of

mutations M ⊆ S→ S, and a set of observations O ⊆ {o|∃R, o : S→ R}.
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counter

(c) Threshold counter

Figure 3.4: Example mutation graphs from our formalism of objects discussed in this paper.
Shaded nodes are possibly visible in the filtered view. In (a) letters are used to distinguish
inserts (I), updates (U), and removals (R).

A mutation m is invisible to an observation o if ∀m′ ∈ M, s ∈ S : o (m (m′ (s))) =

o (m′ (s)). If a mutation is not invisible to an observation it is said to be visible.

Example. In the key-value map construction of Section 3.1.1, updates are invisible to

contains observations, but are visible to get if the key for update and get match.

We define the mutation-DAG for an object’s state as a directed acyclic graph that has

a node for every mutation in the history, and an edge from node b to node a if b depends on

a. Conservatively, we can think of this “depends on” relationship as: if two updates do not

commute in some view, then whichever update occurs second must depend on the one that

occurred first, though this may be too strong for some systems. These edges capture the

flow of information in the object; an edge implies that information from an earlier mutation

could possibly remain in later versions of the object. Some examples of mutation-DAGs for

the objects described earlier are shown in Figure 3.4.

To find the state needed to perform an observation, it suffices to start with the set of

observable nodes in the mutation-DAG and take the transitive closure.

Example. The set of nodes needed for contains on the key corresponding to the second

row of Figure 3.4a is just the insert in that row, while for the key corresponding to the third

row would include all nodes in the row. In a randomly sampled counter (Figure 3.4b), the
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needed nodes are only those that were sampled, while in the threshold counter described

above (Figure 3.4c), observations of the estimated value implicitly depend on earlier, invis-

ible, increments, hence the more complex structure of that graph.

Let needed(o, s) be the number of nodes required to perform observation o in state s. An

observation o is said to be more detailed than another o′ if ∀s, needed(o, s) ≥ needed(o,′ s)

and ∃s, needed(o, s) > needed(o,′ s). That is, for every state of the object the needed state

for o is at least as large as the needed state for o′, and there exists some state where it

is greater. This fits with our intuition: a randomly sampled counter only gives probabilis-

tic guarantees and is thus less detailed than a threshold based counter, and a contains

provides less information than a get, since the former merely determines if a value exists,

while the latter actually provides it. This further argues for a relationship between our

function accelerators and approximate views. A function accelerator takes advantage of

the invisibility of mutations to some observations to accelerate queries by ignoring some

updates. An approximate view does something similar, but, since the mutations it ignores

are not invisible, it must lose some information.

Relationship between detail and consistency: it is easy to construct objects that

are very precise but are only eventually consistent; for instance, a counter which receives

increments 2, 1, 3, 1000 is more accurately represented by a view based on the increments

2, 3, 1000 than a view based on the increments 2, 1, 3, even though the latter is arguably

more consistent than the former. This implies that consistency and detail are not the same

and are partially independent of each other. Our formalism helps define that difference:

detail is a function of the mutation-DAG, while consistency says how the mutation-DAG is

allowed to evolve over time, and which version of the mutation-DAG an observation must

be run against. Though constraints on one may imply constraints on the other, to some

extent they can be considered independently. This is supported by earlier work such as [40]

and [22], which show that with proper semantics a relatively large amount of ambiguity in

the ordering of updates can be tolerated.
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3.5 Discussion

Other filters. FuzzyViews apply pre-defined filtering predicates to the stream of updates.

There are other kinds of general-purpose filters that may also be useful, but do not quite fit

our model. A prefix filter only returns an update once sufficient updates have occurred after

it. A view materialized from one of these is guaranteed to be stale, which may be useful for

privacy reasons. Similarly a suffix filter discards data from sufficiently old updates, which

could be useful for temporally local queries. Given updates that are uniform enough, and

do not require too much history, random sampling can give a probabilistic approximation

of an object, while a rate-based filter, which returns exactly 1 out of every n updates, gives

stronger guarantees on the updates returned, but weaker statistical guarantees. This last

filter has a real-time counterpart, the Hz filter, which returns a fixed number of updates

per unit time, instead of per updates written.

Color Allocation. Constructing FuzzyViews is currently a largely manual task. Though

we developed a library to assist in mapping colors to more human readable predicates,

deciding what predicates are used and thus what views should exist remains a manual

process. It would be interesting to see if it were possible to automatically derive such views

from an API specification; e.g.,the key-set example would be a good candidate for that.

Additionally, our color allocation scheme allows for redundancy, where predicates cause

updates to be tagged with multiple colors. A more advanced scheme could put the set of

predicates used for filtering into a “disjunctive normal form” to ensure only the minimal

number of colors are used, one per unique condition.

37



Chapter 4

Latency Bounds for (Strict)

Serializability

During the design of the FuzzyLog we experimented with a number of concurrency con-

trol protocols in an attempt to create a strictly serializable multiappend which only sends

messages to servers involved in the append, yet still completes after a constant latency in

non-failing cases. It turns out that, given the constraints the FuzzyLog was built under, this

is impossible, and such strictly serializable transactions always have potential executions in

which a transaction takes an amount of time linear in the number of servers involved.

We use a message log formalism, inspired by the classic one in [35], to prove some

latency lower bounds for scalable serializable and strictly serializable systems, an issue

which confounded the FuzzyLog project for some time in our attempt to scale cross server

transactions.

4.1 (Strict) Serializable Latency Lower Bounds

4.1.1 Model

A transaction is allowed to perform arbitrary read-modify-write actions on each server.

Protocol correctness is evaluated under the usual asynchronous network model, with

client failures (various places including [62]); however, as there is no natural way to define
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latency under this model, we evaluated latency under a partial synchrony model [63]: there

exists some maximum message delivery time d, and neither the protocol nor the machines

are aware of what this time may be.

4.1.2 Notation

For all of these proofs time goes left-to-right. T1 is used to mean the receipt of the messages

for transaction 1 at a server. In the event that the receipt of multiple transaction’s messages

are interleaved, T1a is used to mean the receipt of the first group of messages from transaction

1 at a server, T1b the second; we never deal with cases where the messages are interleaved

in more than two groups. We use Ti < Tj to mean transaction i happens before transaction

j in some partial order, which will be specified in the prose. Therefore the following:

server 1 : T1 T2

server 2 : T1a T3 T1b

means that at server 1 first all messages from T1 are received then all messages from T2,

while on server 2 the first group of messages from T1 are received, then all messages from

T3 and finally the second group of messages from T1.

4.1.3 Bounds

We concern ourselves with scalable, client-server transactions. Scalable, in that servers

only receive messages regarding transactions they take part in; if a transaction does not

access a server, that server does not need to know of it. This prevents bottlenecks from

forming, and allows the system as a whole to scale with an increasing number of servers.

Client-server, in that we only allow clients to communicate with servers; we do not allow

clients to communicate with each other, nor do we allow servers to communicate with other

servers. Disallowing server-to-server communication simplifies both server complexity and

workload, which is useful when building a simple data storage server, such as a shared log,

or for high-performance protocols [64].

We make the following choices for the set of transactions we use to construct our worst-
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case lower bounds, it is possible that by relaxing these one could construct an even worse

bound, but such bounds are not necessarily useful:

• Every transaction both reads a writes at every server it accesses.

• At this point we only care about transactions which are partitionable: at each server,

the transaction only requires data on that server, as these are the minimal useful

form of transactions, and can be generalized to arbitrary transactions with additional

round trips [9].

• Transactions never abort; aborts caused by the system force clients to retry transac-

tions, implying unbounded histories if a client never finds a non-aborting order; aborts

induced by the client are simply transactions which performs no writes. In either case,

an aborted transaction need not be ordered with respect to other transactions, so re-

moving them does not improve latency.

• All transactions which access a server conflict.

• Servers never fail; in a real system this would be achieved by replicating the servers

and postponing ACKs for operations until they are sufficiently replicated. Allow-

ing histories to contain server failures and reinitialization creates the potential for

unbounded histories, as servers repeatedly go down and are brought back up.

A transaction T is said to be complete at a server at the point when all future transac-

tions which access that server are guaranteed to see the results of T ; once a transaction is

complete at a server it is guaranteed to commit. A transaction is fully complete once it is

complete at every server it accesses, and the client which started the transaction is aware

of this.

Our proofs rely on transactions being partially completed : complete at one server even

though the transaction is still in progress at another. Since the protocols must be correct

in an asynchronous network model, the only way for a server to be aware of changes in

the outside world is through message receipt; in particular, a server cannot determine the

duration that has passed since a transaction has received its latest message. Therefore,

once a server has received the final message for a transaction, the transaction must either
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be complete at that server, or blocked by some other transaction for which the server has

received a message; if we allow a transaction to block without there being any expected

message to unblock it, the transaction will potentially wait forever.

Theorem 1. It is impossible to guarantee serializable transactions complete in 1 round trip

with only client-to-server communication.

Proof. Consider the following message receipt history:

server 1 : T1 T2

server 2 : T2 T1

As there are no messages left for either transaction, both must be complete. Further, since

each transaction can only send one message, each transaction must be complete at a server

as soon as its message is received. By the order of receipt at server 1, T1 must happen

before T2, by server 2, T2 must happen before T1. This causes a cycle in transaction order

T1 < T2 < T1, violating serializability.

By Theorem 1, serializable protocols require at least two message receipts at the servers,

and therefore two round trips. As we are in an asynchronous setting, there is no purpose in a

client sending a message after the first one except due to message receipt (all such messages

could be combined into the previous message). Therefore, without loss of generality, we

assume protocols are of the form: send a message to all servers, wait for an ACK from at

least one of the servers, repeat; servers, and clients which have started their transaction do

not send messages except due to message receipt.

Definition 1. A transaction T2 is said to be “pulled before” another transaction T1 if T1a

is received before T2a on some server, but T1 happens after T2 in the serialization order.

Example If the message-receipt history

server 1 : T1a T2 T1b

corresponds with a serial ordering T2 < T1, then T2 would be said to be “pulled before” T1.
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Lemma 1. In any serializable protocol involving at least two messages, there must exist

potential executions in which one transaction is pulled before another.

Proof. Consider the following message-receipt history involving two transactions: T1 and

T2:

server 1 : T1a T2 T1b

server 2 : T2a T1 T2b

Since all messages have been received, the three transactions involved must all be complete.

If no transaction is pulled before another, then in the serialization T1 < T2 due to the

order of message receipt on server 1, and T2 < T1 due to server 2. This leads to a cycle

T1 < T2 < T1, violating serializability.

We use these to prove that the latency lower bound for a strictly serializable transac-

tion is at least linear in the number of servers touched by the uncompleted portion of a

transaction’s dependency graph. The dependency graph for a transaction Ti, as defined in

Concurrency Control [35], consists of the set of transactions which are serialized before Ti

and which transitively conflict with Ti.

Intuition To complete strictly, a transaction must know that nothing new can be added to

its dependency graph; if a transaction is complete before this point a new, later transaction

can be serialized before it, causing a cycle between real-time and the serialization, and

violating strict serializability. In the worst case this forces the transaction to wait until it

hears from all of the other servers before it is allowed to complete. We can force the servers

to only communicate as in a linear network, causing the communication of this information

to take a linear number of hops and thus linear time.

A system of scalable transactions can be viewed as a message passing system in which

only some of the servers are connected. In particular, two servers share a direct link if

and only if there is some pending transaction Tm which touches them both. If there is

such a transaction, then the servers can communicate by appending information to their

ACKs, and using the client for said transaction as a proxy. Servers which lack such a direct

connection can communicate if they are connected by multiple such hops. In the worst case,
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each server shares a transaction with exactly one other server, requiring a linear number of

hops for the two furthest servers to communicate. Since each hop corresponds to a server

sending some client a message, and the client forwarding said message to another server, in

the worst case each hop take a RTT.

Lemma 2. In the worst case, if two servers within some transaction’s dependency graph

wish to communicate, it takes time linear in the depth of the uncompleted portion of a

dependency graph to propagate information from one to the other.

Proof. By our scalability property, servers can only exchange information with clients, and

then only if they share a transaction. Servers can thus only communicate with each other

by using the clients as a proxy. Consider the following allocation of transactions to servers:

server 1 : {T1, T2}

server 2 : {T2, T3}

server 3 : {T3, T4}
...

...

server n : {Tn, Tn+1}

Each server i is only able to communicate with servers i ± 1. Thus, for server n to com-

municate with server 1, it takes at least |n− 1| hops, and, since every hop takes a server-

client-server trip, in the worst case this corresponds to linear RTTs.

Theorem 2. Strict serializability takes time at least linear in the number of servers in a

transaction’s dependency graph.

Proof. A strictly serializable execution implies that the transactions are serializable, and

that this order obeys real time [65]: if a transaction Tj starts after some other transaction

Tk ends, then the serial order must not contain Tj < Tk.

Assume there exists a protocol that completes in less than a linear number of RTTs.

By Lemma 2 this implies that transactions can complete before receiving information from
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Figure 4.1: Transaction timing which causes a cycle in the case where sub-linear messages
are used.

one of the servers. Consider the following history in which TQ is pulled before Tn:

server 1 : T1 TP

server 2 : T2 T1

server 3 : T3 T2

...
...

...

server n : Tn Tn−1

server n + 1 : Tna TQ Tnb

By the completeness condition, in the serial order T1 < TP and ∀i ∈ [1, n) , Ti+1 < Ti,

further TQ < Tn by assumption. Further, since transactions complete in sub-linear time,

TP completes before it hears from all of the servers, in particular, it does not hear from

servern. Thus, TP is able to complete before Tn does. This being the case, transaction

timings such as the one in Figure 4.1 causes a cycle with TP < TQ in real time. (Though

such a history would in fact take less than linear RTTs, this is irrelevant; since the machines

have no clocks they cannot take advantage of this fact).

Upper bound There are strictly serializable protocols which can complete in time linear

in the depth of a transaction’s dependency graph. One such protocol is as follows:
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1. Perform a serializability protocol, which doesn’t allow new transactions to be serial-

ized before conflicting completed ones1. There are some, such as Skeen’s algorithm

(described in 5.1.2 as well as in [66]) which complete in time no greater than linear in

the depth of the dependency graph

2. After the serializability protocol completes at a server, instead of completeing the

transaction immediately, buffer it until all transactions in its dependency graph have

fully completed, and only then handle it in the serialization order.

Proof. Assume there is a cycle in the order. Since the serialization protocol is correct by

assumption, and there can be no cycles in the real-time ordering of transactions (i.e., a

transaction cannot finish if it has not yet started), this must be due to transactions T1 and

T2 such that T1 < T2 in the serialization while T2 < T1 in real time. However, T2 doesn’t

complete until after every transaction in its dependency graph has fully completed, and T2

itself has been serialized, so T1 being serialized first would require T1 to be serialized before

an already committed transaction, violating an assumption.

Since every transaction waits for all the transactions which are serialized before it, and

transactions complete in parallel unless they conflict, this takes time linear in the depth of

the dependency graph.

4.1.4 Other Protocols

Contemporary protocols exhibit both extremes of the tradeoff implied by these bounds,

with some tending towards better latency while others attempt scalability. Paxos [2] and

centralized sequencers [18] have sub-linear latency in exchange for centralization: with a

centralized sequencer a single server sees every transaction, while in Paxos every server

sees everything. Ordered two phase locking [35] takes time either linear in the number of

transactions, when waiting for locks to be released, or time linear in the number of servers,

when waiting for locks to be acquired.

1. Specifically it is stated by Bernstein and Hadzilacos [35, Chapter 1, pg 15-16] that if a user submits a
transaction after a conflicting one has been ACKed, it is guaranteed that the new transaction will execute
after the ACKed one. For this work it is only necessary that some protocol has this property, and we do
not require that all serializable algorithms provide it.
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Chapter 5

System Implementation

5.1 Dapple Design and Implementation

Dapple is a distributed implementation of the FuzzyLog abstraction, designed with a par-

ticular set of requirements in mind. The first is scalability : reads and appends must scale

linearly with the number of colors used by the application and the number of servers de-

ployed by Dapple, assuming that load is balanced evenly across colors. The second require-

ment is space efficiency : the FuzzyLog partial order has to be stored compactly, with edges

represented with low overhead. A third requirement is performance: the append and sync

operations must incur low latency and I/O overhead.

Dapple implements the FuzzyLog abstraction over a collection of storage servers called

chainservers, each of which stores multiple in-memory log-structured address spaces. Dapple

partitions the state of the FuzzyLog across these chainservers: each color is stored on

a single partition. Each partition is replicated via chain replication [67]. Our current

implementation assumes for durability that storage servers are outfitted with battery-backed

DRAM [68, 69]. We first describe operations against a single color on an unreplicated

chainserver.

5.1.1 Single-color operation

Recall that each FuzzyLog color consists of a set of totally ordered chains, one per region;

each region has the latest copy of its own local chain, but a potentially stale copy of the
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other regions’ chains. Dapple stores each chain on a single log, such that the order of the

entries in the log matches the chain order (i.e., if a chain contains an edge from B to A, B

appears immediately after A in the corresponding log). In a deployment with R regions,

each region stores R logs, one per chain; one of which clients in the region actively write to

(the local log), while the remaining are asynchronously replicated from other regions (we

call these shadow logs). We choose to store each chain in its own address space, as opposed

to fetching chains via backpointers (as in e.g., Tango [11]) due to the latency hit of following

pointers. Figure 5.1 shows the time to fetch a number of entries when each node stores 4

backpointers within the chain, 10 such backpointers, or if clients can index directly into the

chain. For longer sequences of fetches the backpointer based systems incur an approximately

linear slowdown, while the latency of indexing remains roughly constant as the time to fetch

later entries is hidden by pipelining. Dependencies between entries within different chains

are still stored as backpointers; since we must be able to add a dependency without access

to the canonical version of entry which is depended on, this is the only implementation

that can work. Fortunately, this does not cause any noticeable slowdown. An example of

this can be seen in Figure 5.2 where we compare reading a number of entries and chains

without dependencies versus reading the same amount with dependencies arranged so that

the entries are forced into a linear order. Despite this being the worst case for playback there

is no appreciable latency hit, since, after a single round trip to discover which entries exist,

the entries can still all be fetched in parallel; it is only their return to the application which

must be serialized. Each server exposes a low-level API consisting of three primitives:

log-append, which appends an entry to a log; log-snapshot, which accepts a set of logs

and returns their current tail positions; and log-read, which returns the log entry at a

given position.

Clients implement the sync on a color via a log-snapshot on the logs for that color,

followed by a sequence of log-reads. The return value of log-snapshot acts as a vector

timestamp for the color, summarizing the set of nodes present for that color in the local

region; this is exactly the snapshot ID returned by the sync call. The client library fetches

new nodes that have appeared since its last sync via log-read calls. When the application

calls append on a color, the client library calls log-append on the local log for that color.
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It includes the vector timestamp of nodes seen thus far in the new entry; as a result, each

appended entry includes pointers to the set of nodes it causally depends on (these are the

cross-edges in the FuzzyLog DAG). On a sync, the client library checks each entry it reads

for dependencies and recursively fetches them before passing them up to the application.

In this manner, the client ensures that playback of a single color happens in DAG order.

Each chainserver periodically synchronizes with its counterparts in remote regions, up-

dating the shadow logs with new entries that originated in those regions. To fetch up-

dates, the chainserver itself acts as a client to the remote chainserver and uses a sync call;

this ensures that cross-chain dependencies are respected when it receives remote nodes.

Copied-over entries are reflected in subsequent sync calls by clients and played; new entries

appended by the clients then have cross-edges to them.

Dapple replicates each partition via chain replication. Each log-append operation is

passed down the chain and acknowledged by the tail replica, while log-snapshot is sent

directly to the tail. Once the client obtains a snapshot, subsequent log-read operations

can be satisfied by any replica in the middle of the chain. The choice of replication protocol

is orthogonal to the system design: we could equally use Multi-Paxos to accomplish this.

5.1.2 Multi-color operation

The FuzzyLog API supports appending a node to multiple colors. In Dapple, this requires

atomically appending a node to multiple logs: one log per color corresponding to its local

region chain. To do so, Dapple uses a classical total ordering protocol called Skeen’s al-

gorithm (which is unpublished but described verbatim in other papers, e.g. Section 4 in

Guerraoui et al. [66]) to consistently order appends.

The original Skeen’s algorithm produces a serializable order for operations by multiple

clients across different subsets of servers. Unfortunately, it is not tolerant to the failure of

its participants. In our setting, each ‘server’ is a replicated partition of chainservers and

can be assumed to not fail. However, the clients in our system are unreplicated application

servers that can crash. We assume that such client failures are infrequent; this pushes us

towards a protocol that is fast in the absence of client failures and slower but safe when such

failures do occur. Accordingly, we add fault-tolerance mechanisms such as leases, fencing,
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and write-ahead logging to produce a variant of Skeen’s that completes in two phases in a

failure-free ‘fast’ path, but can safely recover if the origin client crashes.

Each chainserver maintains a local logical Lamport clock [70]. All client operations are

predicated on relatively coarse-grain leases [71] (e.g., 100 ms), which they obtain from each

server (or the head of the replica chain for each partition); if the lease expires, or the head

of the replica chain changes, the operation is rejected.

We now describe failure-free operation. The fast path consists of two phases, and has to

execute from start to completion within the context of a single set of leases, one per involved

partition. For ease of exposition, we assume each partition has one replica chainserver.

In the first phase, an origin client (i.e., a client originating a multi-append) contacts

the involved chainservers, each of which responds with a timestamp consisting of the value

of its clock. Further, the chainserver inserts the multi-append operation into a pending

queue along with the returned timestamp. In addition, the origin client provides a WAL

(write-ahead log) entry that each chainserver stores; this includes the payload, the colors

involved, and the set of leases used by the multi-append.

Once the client hears back from all the involved chainservers, it computes the max across

all received timestamps, augments it with a unique nonce to break ties, and transmits that

back to the chainservers in a second phase: this max is the timestamp assigned to the multi-

append and is sufficient to serialize the multi-appends in a region. When a chainserver

receives this message, it moves the multi-append from the pending queue to a delivery

queue; it then waits until there is no other multi-append in the pending queue with a

lower returned timestamp, or in the delivery queue with a lower max timestamp (i.e., no

other multi-append that could conceivably be assigned a lower max timestamp). Once this

condition is true, the multi-append is removed from the delivery queue and processed.

The protocol described above completes in two phases. A third step off the critical path

involves the client sending a clean-up message to delete the per-append state (the WAL, plus

a status bit indicating the last executed phase) at the chainservers; this is lazily executed

after a multiple of the lease time-out, and can be piggybacked on other messages. If a

lease expires before the two phases are executed at the corresponding server, or the origin

client crashes, it leaves one or more servers in a wedged state, with the multi-append stuck
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in the pending queue and blocking new appends to the colors involved. After a time-out,

the chainserver begins responding to new append requests with a stuck-err error message,

along with the WAL entry of the stuck multi-append. A client that receives such an error

message can initiate the recovery protocol for the multi-append.

A client recovering a stuck multi-append (i.e., a recovery client) proceeds in three phases:

it fences activity by the origin client or other recovery clients; determines the wedged state

of the system; and completes the multi-append. The fencing phase involves accessing the

lease set of the original client (which is stored in the WAL), invalidating it at the servers,

and writing a new recovery lease set at a designated test-and-set location on one of the

chainservers. If some other recovery client already stored a lease set at this location, we

wait for that client to recover the append, fencing it after a time-out. Fencing ensures that

at any given point, only one client is active; the WAL allows clients to deterministically roll

forward the transaction.

Correctness: Skeen’s protocol has been proved by others to generate a total order [66,

72]. To prove our recovery protocol correct, we wrote a machine-checked proof in Coq,

which we now summarize.

5.1.3 Validating the Recovery Protocol

The correctness of the recovery protocol can be decomposed into three parts:

1. The fencing protocol provides mutual exclusion.

2. A client acting in isolation can recover the state of the protocol for a multiappend

from the servers.

3. Skeen’s underlying protocol which provides ordered multicast as discussed in [66].

The system consists of a set of client threads, whose messages are written messagesend,

and a set of server threads, whose messages are written messageack. A history is an arbitrary

serialization of the message sends in the system. For history h, and any two events a and

b, a ≺h b if a occurs before b in the history; we write a ≺ b if the history we are referring

to is apparent from context. We only concern ourselves with histories consistent with both
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1 client:
2 state: id
3
4 take over(chains, failed client id):
5 forall chain ∈ chains,
6 fence(failed client id)
7 forall chain ∈ chains,
8 wait for fence ack()
9 test−and−set(failed client id, id)

10
11 server:
12 state:
13 live clients: set Id
14
15 on receive(fence(id)):
16 live clients = live clients − {id}

Table 5.1: Fencing Pseudocode

program order (if the program requires receipt of message a at a thread before said thread

can send message b then a ≺ b in the history), and network order (the sending of a message

a, asend, must precede the acknowledgment of said message, aack) as these are the only

histories which can be exhibited by a real system. For proof engineering purposes, our

histories only contain message sends, and we do not model message receipt directly, instead

leaving it implicit in the ordering constraints; if program order requires that the receipt

of a must precede the send of b then the receipt of a must happen at some point between

asend/ack and bsend/ack. Since our proofs cannot rely on the specific timing of message-

receipt, beyond what is specified by program-order, they should be robust to arbitrary

receipt ordering. Recovery is inherently per-multiappend. In the real system each of these

functions, except fence, would be indexed based on message-id.

Fencing Protocol

The fencing protocol in Table 5.1 provides mutual exclusion: at any point in the history

there is at most one client which is able to mutate the servers. For this protocol, each client

is required to have a unique ID, and each of the servers stores a set of IDs live clients.

Additionally there is a test-and-set, stored on one of the servers, which contains a client ID,
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starting off with the ID of the client which originated the multiappend. At start all client

ids are found in live clients on all the servers, and servers only respond to messages if

the sending clients ID is found in their live clients. If a client wishes to take over the

protocol, it first fences off the failed client, removing it from live clients and making it

impossible for the failed client’s messages to be received. Then it attempts to take over a

test-and-set from the failed client’s ID; if it succeeds the client can now perform mutations.

This protocol provides mutual-exclusion via uniqueness of test-and-set. At every point

in the protocol an invariant is maintained that at most one client is capable of mutating

the servers’ state. At start, the original client owns the test-and-set, and is the only client

able to perform the append. Before a client can attempt to take over the test-and-set it

must first fence-off the client currently owning the test-and-set, ensure that said client can

no longer append, and thus no client can append. After this, at most one client can succeed

in taking over the test-and-set, and thus continue the mutation.

Recovery Protocol

The fencing protocol allows us to treat clients as if they are acting in isolation; for as long

as a client is capable of mutating the servers’ state it is the only client that is capable of

doing so. This implies that on switchover between clients we need not concern ourselves

with what the failed client was in the process of doing, but only with the state which is

actually found on the servers.

Every server goes through the state-machine seen in Figure 5.3: they start off storing no

state, then stores which message they last received, until they are garbage collected. Due

to the definition of Skeen’s protocol, a server can only see stage 2 after all servers have seen

stage 1, and garbage collection is only valid after all servers have seen stage 2.

Lemma 3. In a valid history, there are only 4 states the servers can be in:

1. No server stores anything

2. Some servers store Skeens 1, some servers store nothing, and no server has gotten

anything after Skeens 1.

3. Some servers store Skeens 1, the rest store Skeens 2.
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Figure 5.3: The state machine of Skeen’s protocol.

4. Some servers store Skeens 2, the rest store nothing.

To see why this is, consider a history which results in one server storing Skeens 1, one

storing Skeens 2 and one storing nothing. Since a server has received Skeens 2 in this

history, every server must have received Skeens 1. This implies that the server which stores

nothing must have been garbage collected. However garbage collection can only occur after

every server has received Skeens 2 leading to a contradiction with the server storing Skeens

1. Similar arguments show that the other invalid states cannot occur.

The above lemma gives us the following algorithm for determining where in Skeen’s

protocol a recovering client should continue:

1. If no server stores anything, Skeen’s protocol must have either finished, or never

started. Either way, there is nothing for the client to do.

2. If some servers store Skeens 1 and the others servers store nothing, the previous client

must have failed during Skeens 1. We must send Skeens 1 to the remaining servers,

and continue from there.

3. If some servers store Skeens 1, the rest store Skeens 2, the previous client must have

failed while sending Skeens 2. We need to send Skeens 2 to the servers which have

not gotten it, and continue from there.

54



4. If some servers store Skeens 2, and the rest store nothing the previous client must

have failed during garbage collection. We can simply garbage collect the remaining

descriptors.

For liveness we additionally need to assume that, after some time has passed, an upper

bound to message delay exists.

Performance and availability: The append protocol takes two phases in the fast

path and three in the recovery path. The protocol can block if the logs being appended to

reside on different sides of a network partition; however, the semantics of colors in FuzzyLog

ensure that we only append to logs within a single region. Single-color appends follow the

same protocol as multi-appends, but complete in a single phase that compresses the two

phases of the fast path.

A subtle but critical point is that a missed fast path deadline will block other multi-

appends from completing, but will not cause them to miss their own deadlines; they are

free to complete the fast path and receive a timestamp, and only block in the delivery

queue. As a result, a crashed client will cause a latency spike but not a cascading series of

recoveries. Like all protcols, this protocol is subject to FLP [62]; since recovery clients can

fence each other perpetually it can be susceptible to livelock. Our implementation mitigates

this by having clients back-off for a small, randomized time-out if they encounter an ongoing

recovery, before fencing it and taking over recovery.

5.1.4 Implementation

Dapple’s design can be seen in Figure 5.4. On the chainserver, incoming requests are

handled by a set of worker cores. When an append, or a snapshot of multiple chains,

arrives, the worker core contacts a dedicated ordering core with the colors of the request

to determine when the request should occur. All other work, including reads, IO and

datastructure lookup is performed at a worker core. This is enabled by using a lock-free

trie as the primary index for each locally stored chain.

When reading, the client fetches nodes from the server in a parallel manner, and relies

on a node scheduling module to return nodes to the application in an order consistent with
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Figure 5.4: The module layout for Dapple.

the DAG. This module is also responsible for adding causal edges. The application interacts

with the client library through a log handle, which provides the API described in section 2.
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Chapter 6

Evaluation

We run all our experiments on Amazon EC2 using c4.2xlarge instances (8 virtual cores, 15

GiB RAM, Intel Xeon E5-2666 v3 processors). Most of the experiments run within a single

EC2 region; for geo-distributed experiments, we ran across the us-east-2 (Ohio) and the

ap-northeast-1 (Tokyo) regions, which are separated by an average ping latency of 168ms.

In all experiments, we run Dapple with two replicas per partition, unless otherwise specified.

All throughput numbers are without any application-level batching.

We first report latency micro-benchmarks for Dapple on a lightly loaded deployment.

Figure 6.1 shows the distribution of latencies for 16-byte appends involving one color (top)

and two colors on different chainservers (middle), as well as the latency to recover stuck

multi-appends due to crashed clients (bottom). In all cases, latency increases with increasing

replication factor due to chain replication. At every replication factor, single-color appends

are executed with lower latency than two-color appends, which in turn require lower latency

than two-color recovery. This difference in latency arises because single-color appends exe-

cute in a single phase, while two-color appends execute in two phase and two-color recoveries

execute in three phases

The remainder of our evaluation is structured as follows: First, we evaluate the dif-

ferences between Dapple and prior shared log designs (§6.0.1). Second, we use the Map

variants from §2.1 to show that Dapple provides linear scaling with atomicity (§6.0.2),

weaker consistency guarantees (§6.0.3), and network partition tolerance (§6.0.4). Finally,

we describe a ZooKeeper clone over Dapple (§6.0.5).
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Figure 6.1: Dapple executes single-color appends in one phase; multi-color appends in two
phases; and recovers from crashed clients in three phases.
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Figure 6.2: Dapple scales with workload parallelism, but a centralized sequencer bottlenecks
emulated Tango.

6.0.1 Comparison with shared log systems

In this experiment, we show that centralized sequencers in existing shared log systems

fundamentally limit scalability. Shared log systems, such as Tango [11] and vCorfu [14], use

a centralized sequencer to determine a unique monotonic sequence number for each append.

Based on its sequence number, each append is deterministically replicated on a different set

of servers. The sequencer therefore becomes a centralized point of coordination, even when

requests execute against different application-level data-structures or shards. In contrast,

Dapple allows applications to naturally express their sharding requirements via colors, and

can execute appends to disjoint sets of colors independently.

We emulate Tango’s append protocol in Dapple by using five chainserver partitions to

store data, and a single unreplicated server to disperse sequence numbers; given a sequence

number, appends are deterministically written (via a Dapple-append) to one of the five

chainserver partitions in a round-robin fashion. We compare this to a FuzzyLog deployment

that uses five chainserver partitions. The number of partitions and replication factor in

emulated Tango and Dapple are identical, while emulated Tango uses an extra server for

sequencing. We run a workload where each client appends to a particular color, mixing

single-color appends with a fixed percentage of appends that include a second, randomly

picked color. Figure 6.2 shows average throughput over a 10-second run for workloads with

different percentages of two-color appends. Emulated Tango cannot scale beyond four clients
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Figure 6.3: AtomicMap scales throughput while supporting multi-shard transactions.

due to its use of a centralized sequencer. Dapple scales near-linearly when the workload is

fully partitionable (0% multi-color appends), is 2X faster at 1% multi-color appends, and

matches Tango at 10% multi-color appends. At 100% multi-color appends, Dapple performs

worse because the required partial order is nearly a total order, which Tango provides more

efficiently.

6.0.2 Scalable multi-shard atomicity

The FuzzyLog allows applications to scale within a region by sharding across colors, and sup-

ports multi-shard transactions via multi-color appends. We now demonstrate the scalability

of an AtomicMap (Section 2.1.1), which partitions its state across multiple colors. Each

AtomicMap server is a Dapple client, and is affinitized with a unique color (corresponding

to a logical partition of the AtomicMap’s state). Each client performs a combination of

single puts against its local partition and multi-puts against its partition and a randomly

selected remote partition.

Figure 6.3 shows the results of the AtomicMap experiment. For different percentages
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of multi-puts in the workload (on the x-axis), we vary system size and plot throughput on

the y-axis. We use between 8 and 16 chainservers in Dapple (deployed without replication

since we ran into EC2 instance limits). We use 8-byte keys and 8-byte values to emulate a

workload where the AtomicMap acts as an index storing pointers to an external blob store.

Keys for put operations are selected uniformly at random from a key space of 1M keys.

Figure 6.3 shows that under 0% multi-shard puts, throughput scales linearly from 1 to

16 AtomicMap servers. The throughput jump from 16 to 32 servers is slightly less than 2x

because we pack two Dapple clients per AtomicMap server at the 32 client data point (due

to the EC2 instance limit). As the percentage of multi-shard puts increases from 0.1% to

100%, scalability and absolute throughput degrade gracefully. This is expected due to the

extra cost of executing multi-shard puts (each requires a two-phase multi-color append).

6.0.3 Weaker consistency guarantees

Dapple allows geo-distributed applications to perform updates to the same color with low

latency. By composing a single color out of multiple totally ordered chains, one per ge-

ographical region, a client in a particular region can append updates to a color without

performing any coordination across regions in the critical path. This section demonstrates

this capability via a CRDTMap.

In Figure 6.4, we host a single, unpartitioned CRDTMap on five application servers (i.e.,

Dapple clients); we locate each in a virtual region with its own Dapple copy, all running in

the same EC2 region. Four of these servers are writers issuing puts at a controlled aggregate

rate (left y-axis), while the fifth is a reader issuing gets on the CRDTMap. Each writing

server uses four writer processes. The gets observe some frontier of the underlying DAG,

and can therefore lag behind by a certain number of puts (right y-axis), but are fast, local

operations. Midway through the experiment, we spike the put load on the system; this

does not slow down gets at the reader (not shown in the graph), but instead manifests as

staleness.
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Figure 6.4: CRDTMap provides a trade-off between throughput and staleness.

6.0.4 Network partition tolerance

Dapple allows applications to provide strong consistency during normal operation and weak

consistency under network partitions. In this experiment, we demonstrate this capability by

running CAPMap across a primary and a secondary region (us-east-2 and ap-northeast-1,

respectively). The experiment lasts for 14 seconds. From 0-6 seconds, the primary and

secondary regions are connected. Between 6-8 seconds, we simulate a network partition

between the primary and secondary. Finally, from 8-14 seconds, connectivity between the

primary and secondary is restored. Each region runs two servers, one issuing puts and one

issuing gets. We measure the latency of gets and puts (y-axis), against the wall-clock time

they are issued at (x-axis).

Figure 6.5 shows the results of the experiment. In normal operation (0 to 6 seconds),

all updates are stored in a single primary chain, and both regions get strong consistency;

the secondary has high latencies for puts and gets due to the 168 ms inter-region roundtrip

it incurs to access the primary chain. At 6 seconds, the network between the regions

partitions; the primary continues to obtain strong consistency and low latency, but the
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Figure 6.5: CAPMap switches between linearizability and causal+ consistency during net-
work partitions.
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Figure 6.6: DappleZK exploits Dapple’s partial ordering to implement a scalable version of
the ZooKeeper API.

secondary switches to weaker consistency, storing its updates on a local secondary chain

(and obtaining much lower latency for puts/gets in exchange for the weaker consistency).

At 8 seconds, the network heals; the secondary appends a joining node to the primary chain

via a proxy in the primary zone. As part of this joining request, the secondary provides a

snapshot ID reflecting its last appended node to its local chain. The proxy at the primary

waits until the nodes in the snapshot are replicated to the primary zone and seen by it

before completing the joining append. The joining append causes a high latency put by

the secondary just after the partition heals, and a spike in get latency on the primary as it

plays nodes appended to the secondary chain during the partition.

6.0.5 End-to-end applications

We implemented a ZooKeeper clone, DappleZK in 1881 LOC of Rust. DappleZK partitions

a namespace across a set of servers, each of which acts as a Dapple client, storing a partition

of the namespace in in-memory data-structures backed by a FuzzyLog color.
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This section compares DappleZK’s performance with ZooKeeper. Each DappleZK server

is responsible for an independent shard of the ZooKeeper namespace, and atomically creates

and renames files using optimistic read-write transactions. Create operations are restricted

to a single DappleZK shard. Each rename moves a file from one DappleZK shard to another

via the distributed transaction protocol described in Section 2.1.1.

We partition the ZooKeeper namespace across 12 DappleZK shards, and run one Dap-

pleZK server per shard. We deploy Dapple with either one or two partitions. Each partition

is configured with three replicas. DappleZK uses two coloring schemes; a color per partition

and a color per DappleZK shard. In the color per partition deployment, each color holds

updates corresponding to multiple DappleZK server shards.

We run conventional ZooKeeper with three replicas, and also include a partitioned

ZooKeeper deployment with two partitions. Our ZooKeeper deployments keep their state

in a memory-backed ramdisk. Note that ZooKeeper does not support atomic renames; we

emulated renames on it by executing a delete and create operation in succession. We include

the ZooKeeper comparison for completeness; we expect the FuzzyLog single-partition case

to outperform ZooKeeper largely due to the different languages used (Rust vs. Java) and

the difference between prototype and production-quality code.

Figure 6.11 shows the results of the experiment. We vary the percentage of renames in

the workload on the x-axis, and plot throughput on the y-axis. Each x-axis point shows

a cluster of bars corresponding to the four DappleZK configurations, and two ZooKeeper

configurations. With a single color and a single partition, every DappleZK server stores its

state on the same color. DappleZK servers perform their appends and reads against the

same color, which limits their throughput. With two partitions, the number of DappleZK

servers per color is halved, which increases throughput. When we switch to a color per Dap-

pleZK server, throughput increases dramatically because requests from different DappleZK

servers do not need to be serialized against the same color. The addition of another par-

tition further increases throughput because the colors can be spread across two partitions.

When deployed with a single partition, Dapple servers were overloaded, which led to extra

scheduling overhead and caused the two partition case to outperform a single partition by

over 2X (in both color per ZK shard and color per partition cases). With an increasing
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Figure 6.7: Key-set sync latency. The time taken to synchronize a key-set view is a fraction
of the time taken to synchronize the full view, based on the proportion of new entries.

fraction of atomic renames, throughput decreases because DappleZK must perform a dis-

tributed transaction across the involved DappleZK servers. In comparison to DappleZK,

ZooKeeper provided 36K and 66K ops/s with one and two partitions respectively. Further,

the DappleZK views still had a sufficient amount of resources remaining to serve a similar

number of reads.

6.1 FuzzyViews

For FuzzyViews our evaluation focuses on a key metric for SMR systems that we call sync

latency : this is the latency to synchronize the local view at a learner with the underlying

total order. Equivalently, sync time is the latency to fetch and locally apply any relevant

updates which have completed before the query was issued. Sync latency is a fundamental

metric for any kind of SMR system, regardless of whether the underlying total order is

66



[n, n] [n, n + 5) [n, n + 10) [n, n + 100) [n, n + 1000) [n, n + 10000)
Error Bound

102

103

104

105

La
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Figure 6.8: Counter sync latency. Latency to synchronize a bounded error counter (y-axis)
decreases as the acceptable error (x-axis) increases

implemented via Multi-Paxos, group communication, or a shared log.

For micro-benchmarks we used versions of the bloom-filter like key-set and absolute-

error counter. For a case study on using FuzzyViews in a real application, we extended

a Zookeeper implementation. Unless otherwise specified, all our experiments are based on

servers synchronizing with the shared log while a concurrent writer appends at roughly

350K updates per second.

Key-set (function acceleration). In Figure 6.7, we compare the key-set (described in

Section 3.1) against a server that materializes the full map. Note that our key-set can only

answer queries for whether a key exists in the map. We use a zipfian distribution for the

keys, and the ratio of new inserts to updates is determined by the distribution: the less

skewed the distribution, the higher this ratio. As expected, as the proportion of new inserts

decreases, and thus the number of updates that are irrelevant to the key-set increases, the

time to synchronize the key-set decreases, until it eventually reaches a single round-trip

time to the sequencer node of the shared log. Shared log systems are poll based, so learners

always need to check to see if any new updates have appeared before they are confident

that their view is valid; in the optimal case, no relevant updates have been added and the

old view can be used to satisfy the new query. The round trip time to the sequencer thus

represents the absolute minimum time a query can take.
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Figure 6.9: Sync latency vs Append rate. Counters with greater acceptable error need
to see fewer updates, and therefore can handle a greater append rate before becoming
oversaturated. (Note log scale)

Counter (approximation). The connection between approximation error and synchro-

nization latency can be seen more directly in our counter implementation. In Figure 6.8, we

evaluate our bounded-error counter, with thresholds of 5, 10, 100, 1000, and 10000, against

fixed increments at 500 kHz. As the acceptable error increases, the number of updates the

client needs to fetch, and the time taken to update the view decreases. With a high enough

error bound, the view is nearly always valid and it need not fetch any updates a majority of

the time; the sync latency reduces to a single round trip, validating that the current view

is not yet stale.

In a log based system, sync latency is roughly proportional to the number of updates

fetched, until updates are added to the log more rapidly then they are read. After that

point, sync latency grows without bound, as the readers fall more and more behind the

writers; once this occurs, readers can never catch up until writers spend a significant dura-

tion appending at a rate below the average synchronization rate, and the pending updates

get drained. The effect of this on FuzzyViews can be seen in Figure 6.9, where we show the

append rate versus synchronization latency for a number of error-bounds in our bounded-

error counter. As can be seen, not only does latency decrease as acceptable error increases,

but the fuzzier views can support a greater rate of increments before slowing down pre-

cipitously. This implies a system based mainly on FuzzyViews could support a greater
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Figure 6.10: Counter error over time. Despite the underlying structure of the bounded error
counter (threshold = 10), reads remain randomly distributed within its acceptable range
during a series of increments.

write throughput, if the workload in amenable. If the client only needs various FuzzyViews

and never materializes the baseline object then the increased throughput would be sustain-

able. However, if the application needs to materialize a full view on occasion, then the

average throughput will still be bottlenecked by that view; while FuzzyViews allow write

spikes greater than what the full view would be able to handle, eventually this will need to

matched by a quiescent period in which the full view is allowed to catch up.

Conveniently, the log based nature of the system allows us to empirically evaluate the

accuracy of our counter; by recording the size of both the ground-truth color, and our

approximation color when we sync, we can materialize the state of the counter our view

would have seen, had it been reading the entire state. Materializing the full view needs to

be done off-line due to the faster rate at which we can materialize the FuzzyView; if we were

to wait to read in the full state of the counter, our FuzzyViews would be updated much

less frequently than they would be in a real system. However, since the full state remains

in the log, this does not pose an issue.

We instrumented a version of the bounded error counter with a threshold of 10, and

ran it against an incrementor running at roughly 600 kHz; the delta between the real and

approximate values for a series of 100 syncs from this run can be seen in Figure 6.10. Despite

the implementation tending to have something of a sawtooth pattern on this workload, with
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Figure 6.11: Zookeeper sync latency. The time to synchronize metadata based views in-
creases as the rate of new inserts increases.

error increasing from new increments until the threshold is reached, at which point it resets

to 0, in practice the observed error was uniformly distributed over the possible values since

the sync timings was not coupled to the appends.

Zookeeper (function acceleration). For a more realistic example, we extended our

Zookeeper with FuzzyViews for exists and get children. These views used the same

application code as our original Zookeeper implementation; the only changes needed were

to add tagging at send time and to restrict our FuzzyViews’ servers to only read the needed

colors. These views were run against a work generator running at approximately 350 kHz

for the synchronization latency times seen in Figure 6.11. Much as in the Key-set example

above as the proportion of updates which mutate the metadata increases the FuzzyView’s

sync latency increases.
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Figure 6.12: ML sync latency vs Append rate. In the ensemble learning scenario learning
takes a significant amount of time, thus post-hoc filtering is partially effective, though not
as effective as pre-hoc. In each ensemble (A and B) the pre-filtered version is still faster
than the post-filtered version (Note log scale)

Ensemble Learning. The ensemble learning example, Figure 6.12, represents something

of a worse case for SMR, with unusually large updates and a very significant amount of work

per update. This example is dominated by the difference in number of updates between

cohorts A and B, with a majority of updates falling in A. Due to the significant amount

of time it takes to learn a new example, post-hoc filtering is useful, providing much of the

speedup of pre-hoc filtering.
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Chapter 7

Conclusion and Future Work

The shared log provides a compelling model for building distributed systems: it offloads

much of the complexity in building such systems—in particular, consistency and durability—

from the application layer to the system layer. However, while the totally ordered shared

log is a simple abstraction, it is also restrictive, tightly bounding the scalability and con-

sistency of the resulting software; totally ordered logs only work for applications which can

handle centralization of control. The FuzzyLog expands upon the shared log approach with

partially ordered logs. This weakening of log semantics enables the usage of the shared

logs in domains that were previously inaccessible. By partially ordering the log we are able

to order subsets of the logs independently from each other. Within a single datacenter

this allows the logs to scale-out, since independent data shards no longer need to coordi-

nate through a centralized sequencer. Even more significantly, this lack of centralization

enables shared-log-based systems to span geographic regions in a fault-tolerant manner,

since portions of the log can continue to make progress even when network connectivity

is lost. Crucially, applications can achieve these capabilities in hundreds of lines of code

via simple, data-centric operations on the FuzzyLog, retaining the core simplicity of the

shared log approach. Dapple, our realization of the FuzzyLog, implements the abstraction

in a performant manner, built upon a classic message-ordering protocol which we extended

with the ability to handle client and server failures. Compared to traditional SMR, the

FuzzyLog abstraction, and its implementation in Dapple, provides a significantly expanded

set of capabilities, with additional complexity only when necessitated by the semantics of
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these features.

We further extend Dapple by filtering out events within a single, totally ordered, sub-

history. Choosing only the events significant to the problem at hand, objects built from

such sub-histories can be constructed more efficiently, vastly reducing the latency on queries.

Removing sensitive events from an objects’ sub-history permits objects to be built which

only contain information that is needed for the specific use case at hand, reducing the

risk that private information will be leaked. The objects created by this technique, which

we call FuzzyViews, retain all the benefits of the underlying shared log, and are every

bit as serializable and durable as the full object. FuzzyViews are flexible, and can be

used in tandem with other FuzzyViews, or even full instantiations of the object, without

compromising these benefits; since both the FuzzyView and the full object are backed by

the same log, updates to the log are seen by both of them. This enables the usage of a

combination of FuzzyViews and full objects as needed by an application. For instance, one

can use a FuzzyView to accelerate particularly common queries, while falling back to the

full object for those queries which the FuzzyView cannot handle.

One of the main challenges involved in constructing our implementation of the FuzzyLog,

Dapple, was ensuring that the distributed message ordering protocol was both correct and

as performant as possible. Two proofs will be of particular interest to a general audience:

we proved the correctness of our failure handling protocol, which can be used by other

systems in need of message ordering; we also discovered lower and upper bounds on the

latency of scalable serializable and strictly serializable transactions. In short, there is a

tradeoff between throughput and latency: if one wishes to construct a strictly serializable

transaction protocol that communicate with the minimum number of servers, it will have

a worst-case time at least linear in the number of independent servers. This is particularly

notable since the worst case latency for such protocols which are merely serializable is

constant. To our knowledge this is the first such latency bound, and the performance

degradation inherent in strict serializability is important to note for those choosing which

semantics a distributed system should implement. This tradeoff becomes more subtle since

we demonstrate that there are general techniques to transform a serializable protocol into

a strictly serializable one, implying that it is possible, and may be beneficial, to implement
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only the former at the system layer while leaving the latter to the application.

Both the FuzzyLog and FuzzyViews provide novel ways in which the inherent ordering

of events in a system, or lack thereof, can be exploited to enhance the efficiency and power of

distributed systems, and our implementation in Dapple demonstrates that their abstractions

can be realized in an effective manner.
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